Hellinggrafieken

Hellinggrafieken plotten

Bij de functie $f(x) = 0.75x^2$ krijg je als volgt een plot van de hellinggrafiek.

- Voer in $y_1 = 0,75x^2$.
- Zet de cursor achter Y₂ = en kies de optie nDeriv.
 Je vind deze optie via [F2] (= ALPHA] (WINDOW) of in het MATH-MATH-menu.
- Zorg voor het scherm hiernaast.
 Je krijgt Y₁ via [F4] (= ALPHA TRACE) of met de optie Function uit het VARS-Y-VARS-menu.
- Druk op GRAPH. Je krijgt de grafiek van *f* en de hellinggrafiek. Zie de figuur hiernaast.

Omdat de GR voor elke x de helling benadert, gaat het tekenen van de hellinggrafiek niet zo snel.

Met TRACE kun je functiewaarden van y_2 opvragen. Je krijgt

hiermee de helling van de grafiek van y_1 voor de opgegeven *x*-waarden.

Met de optie nDeriv kun je de hellinggrafiek van een functie plotten. Je vindt de optie nDeriv via [F2] in het FUNC-MENU, en ook in het MATH-MATH-menu.

Je kunt de optie **nDeriv** ook gebruiken in het basisscherm om de helling in een punt te bereken.

Met $\frac{d}{dx}(x^3-5x)|_{x=2}$ op het basisscherm krijg je $\left[\frac{dy}{dx}\right]_{x=2}$ bij de functie $f(x) = x^3 - 5x$.

NORMAL	FLOAT A	IUTO REAL	RADIAN	MP	Ū
Plot1	Plot2	Plot3			
NY1	0.75	X ²			
NY 2) _{x=x}			
■ \ ¥3=	=				
NY4=	-				
NY 6=	-				
■NY 7=	=				

Een ander woord voor hellingfunctie is afgeleide functie. In nDeriv herken je het Engelse woord "derivative" dat afgeleide betekent.

